

Features and Benefits

- 1 mm case thickness provides greater coupling for current sensing applications
- Customer programmable offset and sensitivity
- Factory programmed 0%/°C sensitivity temperature coefficient
- Programmability at end-of-line
- Selectable unipolar or bipolar quiescent voltage levels
- Selectable sensitivity ranges between 0.7 and 1.4 mV/G (A1360), 1.4 to 4.5 mV/G (A1361) and 4.5 to 16 mV/G (A1362)
- Device bandwidth selectable under 50 kHz, via capacitor on FILTER pin
- Ratiometric sensitivity, quiescent voltage output, and clamps for interfacing with application DAC
- Temperature-stable quiescent voltage output and sensitivity
- · Precise recoverability after temperature cycling
- · Output voltage clamps provide short circuit diagnostic capabilities
- Wide ambient temperature range: 40°C to 150°C
- Resistant to mechanical stress

Package: 4 pin SIP (suffix KT)

Description

New applications for linear output Hall effect sensing, such as current measurement, require both high accuracy and increased sensor bandwidth. The Allegro[®] A1360, A1361, and A1362 programmable linear Hall effect sensor ICs are designed specifically to achieve both goals. Available in a through-hole SIP (single in-line package), the A136x Hall effect sensor ICs are sensitive and temperature-stable. The accuracy of these devices is enhanced via programmability on the device VOUT pin. A capacitor to ground on the FILTER pin on the A136x can be used to tune the device bandwidth in a range less than 50 kHz.

These ratiometric Hall effect sensor ICs provide a voltage output that is proportional to the applied magnetic field. The quiescent output voltage is user-adjustable around either 50% (bidirectional configuration) or 10% (unidirectional configuration) of the supply voltage, V_{CC} . The device sensitivity is adjustable within three guaranteed ranges: 0.7 to 1.4 mV/G (A1360), 1.4 to 4.5 mV/G (A1361), and 4.5 to 16 mV/G (A1362).

Each BiCMOS monolithic circuit integrates a Hall element, temperature-compensation circuitry to reduce the intrinsic sensitivity drift of the Hall element, a small-signal high-gain amplifier, a clamped low-impedance output stage, and a proprietary dynamic offset cancellation technique.

Continued on the next page...

Functional Block Diagram

Description (continued)

The features of these linear Hall effect sensor ICs make them ideal for meeting high accuracy requirements in automotive and industrial applications. Device specifications are guaranteed over an extended ambient temperature range: -40 °C to 150 °C. The A136x sensor

ICs are provided in an extremely thin case (1 mm thick), 4-pin SIP (single in-line package, suffix KT) that is lead (Pb) free, with 100% matte tin leadframe plating.

Selection Guide¹

Part Number	Packing ²	Sensitivity Range (mV/G)
A1360LKTTN-T	4000 pieces per 13-in. reel	0.7 to 1.4
A1361LKTTN-T	4000 pieces per 13-in. reel	1.4 to 4.5
A1362LKTTN-T	4000 pieces per 13-in. reel	4.5 to 16

¹All variants are programmable for unidirectional or bidirectional use. ²Contact Allegro for additional packing options.

Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Units
Forward Supply Voltage	V _{CC}		8	V
Reverse Supply Voltage	V _{RCC}		-0.1	V
Forward Output Voltage	V _{OUT}		28	V
Reverse Output Voltage	V _{ROUT}		-0.1	V
Forward Filter Voltage	V _{FILTER}		8	V
Reverse Filter Voltage	V _{RFILTER}		-0.1	V
Output Source Current	I _{OUT(SOURCE)}	VOUT to GND	3	mA
Output Sink Current	I _{OUT(SINK)}	VCC to VOUT	10	mA
Ambient Operating Temperature	T _A	Range L	-40 to 150	°C
Storage Temperature	T _{stg}		–65 to 165	°C
Junction Temperature	T _J (max)		165	°C

Pin-out Diagram

Terminal List Table

Number	Name	Description
1	VCC	Input power supply; use bypass capacitor to connect to ground
2	VOUT	Output signal; also used for programming
3	FILTER	Terminal for external filter capacitor for bandwidth setting
4	GND	Ground

OPERATING CHARACTERISTICS valid over full operating temperature range, T_A; C_{BYPASS} = 0.1 µF, V_{CC} = 5 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Electrical Characteristics	1	· · · · · · · · · · · · · · · · · · ·		L	•	·
Supply Voltage	V _{cc}		4.5	5.0	5.5	V
Supply Current	I _{CC}	No load on VOUT	_	9.2	12	mA
Power-On Time ¹	t _{PO}	$T_A = 25^{\circ}C$, C_L (of test probe) = 10 pF, $C_{BYPASS} =$ open; Sens = 4.5 mV/G	-	30	-	μs
Supply Zener Clamp Voltage	Vz	T _A = 25°C, I _{CC} = 13 mA	6	7.6	-	V
Internal Bandwidth	BWi	Small signal –3 dB, 100 G _(P-P) magnetic input signal, C _{FILTER} = open, C _L = 10 nF	50	_	-	kHz
Filtered Bandwidth	BW _f	Small signal –3 dB, 100 G _(P-P) magnetic input signal, C _{FILTER} = 1 nF, C _L = 10 nF	-	-	50	kHz
Chopping Frequency ²	f _C	T _A = 25°C	_	210	-	kHz
Output Characteristics						
Propagation Delay Time ¹	t _{pd}	$T_A = 25^{\circ}C$, impulse magnetic field of 400 G, $C_{FILTER} = open, C_L = 10 nF$	_	1.6	-	μs
Rise Time ¹	t _r	$T_A = 25^{\circ}C$, impulse magnetic field of 400 G, $C_{FILTER} = open, C_L = 10 nF$	-	5.5	-	μs
Response Time ¹	t _{RESPONSE}	T _A = 25°C, C _L = 10 nF	_	7.0	-	μs
Delay to Clamp ¹	t _{CLP}	$T_A = 25^{\circ}C$, impulse magnetic field of 400 G, $C_{FILTER} = open, C_L = 10 nF$	_	30	-	μs
	V _{CLP(HIGH)}	A1360 T 05%0 D 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.65	4.73	4.80	V
		A1361 $I_A = 25 \text{ C}, B = 600 \text{ G}, \text{ Sens} = 5.0 \text{ mV/G},$ By grave symptom = 10 kO	4.65	4.73	4.80	V
Output Voltage Clamp3		A1362	4.65	4.78	4.91	V
	V _{CLP(LOW)}	$\begin{tabular}{ c c c c c c c } \hline A1360 & T_A= 25°C, B = 600 G, Sens = 5.0 mV/G, $-$-$-$-$-$-$-$-$-$-$-$-$-$-$-$-$-$-$-$	0.25	0.32	0.4	V
			0.25	0.32	0.4	V
			0.25	0.32	0.4	V
	V _{N(p-p)}	$T_A = 25^{\circ}C, C_L = 10 \text{ nF}, \text{ Sens} = 1.5 \text{ mV/G}, \\ C_{\text{FILTER}} = 1 \text{ nF} (BW_f = 50 \text{ kHz})$	_	8	-	mV
Noise (peak-to-peak) ⁴		$T_A = 25^{\circ}C$, $C_L = 10$ nF, Sens = 6.6 mV/G, $C_{FILTER} = 47$ nF (BW _f = 2 kHz)	_	8.5	-	mV
		$T_A = 25^{\circ}C, C_L = 10 \text{ nF}, \text{ Sens} = 6.6 \text{ mV/G}, \\ C_{FILTER} = 1 \text{ nF} (BW_f = 50 \text{ kHz})$	-	38	-	mV
DC Output Resistance	R _{OUT}		_	<1	-	Ω
Output Load Registeres	R _{L(PULLUP)}	VOUT to VCC	4.7	_	-	kΩ
	R _{L (PULLDWN)}	VOUT to GND	4.7	_	-	kΩ
Output Load Capacitance	CL	VOUT to GND	_	-	10	nF
Phase Shift ⁵	ΔΦ	C_L = 10 nF, C_{FLITER} = 1 nF (BW = 50 kHz), magnetic input signal frequency = 1 kHz with 1 V _(p-p) output signal	-	2.5	-	deg.
Output Slew Rate ⁶	SR	Sens = 4.5 mV/G, C _L = 10 nF	-	210	-	V/ms

Continued on the next page...

OPERATING CHARACTERISTICS (continued) valid over full operating temperature range, T_A; C_{BYPASS} = 0.1 µF, V_{CC} = 5 V, unless otherwise specified

Characteristic	Symbol		Test Conditions	Min.	Тур.	Max.	Units
Pre-Programming Target ⁷		1		I			L
Pre-Programming Quiescent Voltage Output	V _{OUT(Q)PRE}	B = 0 G,	T _A = 25°C	_	2.0	_	V
		A1360		-	0.5	_	mV/G
Pre-Programming Sensitivity	Sens _{PRF}	A1361	$T_A = 25^{\circ}C$	_	1.1	_	mV/G
		A1362		_	2.7	_	mV/G
Quiescent Voltage Output Progr	amming		L	I			
Initial Quiescent Voltage Quitnut	V _{OUT(Q)UNIinit}		T = 25°C	_	V _{CLP(LOW)}	_	V
	V _{OUT(Q)Blinit}	B = 0 G,	$I_{A} = 25 C$	_	V _{OUT(Q)PRE}	_	V
Coarse Quiescent Voltage Output Programming Bits ⁹				_	1	_	bit
Guaranteed Quiescent Voltage					_	1.15	V
Output Range ^{10,11}		B = 0 G,	$I_A = 25^{\circ}C$	2.15	_	2.85	V
Quiescent Voltage Output Programming Bits				_	8	_	bit
Average Quiescent Voltage Output Step Size ^{12,13}	Step _{VOUT(Q)}	T _A = 25°0	2	3.4	3.85	4.4	mV
Quiescent Output Voltage Programming Resolution ¹⁴	Err _{PGVOUT(Q)}	T _A = 25°0	2	_	Step _{VOUT(Q)} × ±0.5	_	mV
Sensitivity Programming	1	1		I	1 1		
Initial Sensitivity	Sens _{init}	$T_{A} = 25^{\circ}C$	0	_	Sens _{PRE}	-	mV/G
	Sens	A1360		0.7	_	1.4	mV/G
Guaranteed Sensitivity Range ^{15,16}		A1361 T _A = 25°C		1.4	-	4.5	mV/G
		A1362		4.5	-	16	mV/G
Sensitivity Programming Bits				-	8	-	bit
	Step _{SENS}	A1360		4.2	5.3	6.2	μV/G
Average Sensitivity Step Size ^{12.13}		A1361 T _A = 25°C	15	16	21	μV/G	
		A1362		65	79	90	μV/G
Sensitivity Programming Resolution ¹⁴	Err _{PGSENS}	$T_A = 25^{\circ}C$	2	_	Step _{SENS} × ±0.5	_	μV/G
Lock Bit Programming	•						
Overall Programming Lock Bit	LOCK			-	1	_	bit
Factory-Programmed Sensitivity	y Temperature	e Coeffici	ent				
Sensitivity Temperature Coefficient ¹⁷	TC _{SENS}			-0.025	0	0.025	%/°C
Error Components							
	Lin _{ERR}	A1360		-3.0	-	3.0	%
Linearity Sensitivity Error ¹⁸		A1361		-2.5	-	2.5	%
		A1362		-2.0	-	2.0	%
	Sym _{ERR}	A1360		-3.5	_	3.5	%
Symmetry Sensitivity Error ¹⁹		A1361		-3.0	_	3.0	%
		A1362		-3.0		3.0	%
Ratiometry Quiescent Voltage Output Error ²⁰	Rat _{ERRVOUT(Q)}			-	< ±1.5	_	%
Ratiometry Sensitivity Error ²⁰	Rat _{ERRSENS}			-	< ±1.5	-	%
Ratiometry Clamp Error ²¹	Rat _{SENSCLP}	$T_{A} = 25^{\circ}C$	C	-	< ±1.5	_	%

Continued on the next page...

OPERATING CHARACTERISTICS (continued) valid over full operating temperature range, T_A; C_{BYPASS} = 0.1 µF, V_{CC} = 5 V, unless otherwise specified

Characteristic	Symbol		Test Conditions	Min.	Тур.	Max.	Units
Drift Characteristics							
Quiescent Voltage Output Drift Through Temperature Range ¹	ΔV _{OUT(Q)}	A1360	V _{OUT(Q)} = 2.5 V; Sens = Sens(min)	-20	-	20	mV
		A1361		-20	-	20	mV
		A1362		-60	-	60	mV
		A1360	V _{OUT(Q)} = 2.5 V; Sens = Sens(max)	- 35	-	35	mV
		A1361		-50	-	50	mV
		A1362		-160	-	160	mV
Sensitivity Drift Due to Package Hysteresis ¹	$\Delta Sens_{PKG}$	T _A = 25°	C, after temperature cycling	-	< ±1	-	%

¹ See Characteristic Definitions section.

 2 f_C varies up to approximately ±20% over the full operating ambient temperature range, T_A, and process.

 3 V_{CLP} voltages are production-tested, with the sole exception of the A1360 V_{CLP(HIGH)}, which is guaranteed by design (the low sensitivity and corresponding high gauss levels required for testing A1360 V_{CLP(HIGH)} make production testing impractical).

⁴ Noise is dependent on the sensitivity of the device and the filter capacitance. An 8 mV peak-to-peak noise floor exists that is independent of device sensitivity. This noise floor attenuates proportionate to the filter capacitance (and device bandwidth).

⁵ Unit of measure (phase degrees) in reference to the magnetic input signal.

⁶ High-to-low transition of output voltage is a function of external load components and device sensitivity.

⁷ Raw device characteristic values before any programming.

 8 V_{OUT(Q)UNlinit} typically starts below the lower clamp voltage, V_{CLP(LOW)}. When programming the fine quiescent duty cycle for this parameter, several codes may need to be addressed before V_{OUT(Q)UNI} can be measured above V_{CLP(LOW)}.

 9 Bits for selecting between $V_{OUT(Q)UNI}$ and $V_{OUT(Q)BI}$ programming ranges.

 10 V_{OUT(Q)} guaranteed by design.

 $^{11}V_{OUT(Q)}(max)$ is the value available with all programming fuses blown (maximum programming code set). The $V_{OUT(Q)}$ range is the total range from $V_{OUT(Q)init}$ up to and including $V_{OUT(Q)}(max)$. See Characteristic Definitions section. Quiescent Voltage Output may drift by an additional ±10 mV over the lifetime of this product.

¹² Step size is larger than required, in order to provide for manufacturing spread. See Characteristic Definitions section.

¹³ Non-ideal behavior in the programming DAC can cause the step size at each significant bit rollover code to be greater than twice the maximum specified value of Step_{VOUT(Q)} or Step_{SENS}.

¹⁴ Overall programming value accuracy. See Characteristic Definitions section.

¹⁵ Sens guaranteed by design.

¹⁶ Sens(max) is the value available with all programming fuses blown (maximum programming code set). Sens range is the total range from Sens_{init} up to and including Sens(max). See Characteristic Definitions section. Sensitivity may drift by an additional ±2% over the lifetime of this product.

¹⁷ Programmed at 150°C and calculated relative to 25°C.

¹⁸ Linearity is only guaranteed for output voltage ranges of ±2 V from the quiescent output for bidirectional devices and +2 V from the quiescent output for unidirectional devices. These linearity ranges are only valid within the operating output range of the device. The operating output range is confined to the region between the output clamps. Linearity may shift by up to +/- 1 % over the lifetime of this product.

¹⁹ Symmetry error is only valid for bidirectional devices. Symmetry may shift by up to ±1% over the lifetime of this product.

²⁰ Percent change from actual value at V_{CC} = 5 V, for a given temperature, over the guaranteed supply voltage operating range.

²¹ Percent change from actual value at V_{CC} = 5 V, T_A = 25°C, over the guaranteed supply voltage operating range.

