

HEX-101A-4T

Halogen Free

HALL ELEMENT

TEL: 0755-83537230

FAX: 0755-83550548

E-mail sales@haierxikj.com

Website http://www.haierxikj.com

1.Application

This specification sheet is applied to Hall sensor that HEX.TEC supplies.

2. Electrical Characteristics

2.1 Maximum Ratings

(Ta : 25°C)

Parameter	Symbol	Rating	Unit
Maximum Input Current	Imax	20 (at 25°C)	mA
Maximum Power Dissipation	Pmax	150 (at 25°C)	mW
Operating Temperature Range	Тор	-40 ~ +120	°C
Storage Temperature Range	Tst	-40 ~ +150	°C

2.2 Electrical Characteristics (Measured at 25°C)

Parameter	Symbol	Measurement Conditions	Min	Max	Unit
Output Hall Voltage	Vн	Vin=1V, B=500G	196	320	mV
Input Resistance	Rin	I=0.1mA	240	550	Ω
Output Resistance	Rout	I=0.1mA	240	550	Ω
Offset Voltage	Vo	Vin=1V, B=0G	-7	+7	mV
Temp. Coeff. of VH	α	Ta=0 ~ +40°C	_	-1.8	% /°C
Temp. Coeff. of Rin, Rout	β	Ta=0 ~ +40°C		-1.8	% /°C

※ VH=VHM-VO (VHM : The output voltage measured at 500G.)

2.3 Rank Classification and Mark on Output Hall Voltage

Output Hall Voltage, Vн (mV)	Rank	Mark	Measurement Conditions	
196 ~ 236	D	•SD		
228 ~ 274	E	•SE	$V_{in} = 1V, B = 500G$	
266 ~ 320	F	•SF	(Constant Voltage)	

3. Method for Mounting

- 3.1 Lead Frame
- 1) The material of lead frame is phosphor bronze alloy and the die bonded surface is plated by silver. The minimum thickness of plating is 3.0 µm.
- 2) Lead Frame is plated by pure Sn and the thickness is controlled by $4\sim 12\mu$ m.

3.2 Soldering Conditions on PCB

- 1) No rapid heating and cooling is desired.
- 2) Preheating is recommended for $1 \sim 2$ minutes at $150 \sim 190$ °C.
- 3) Reflowing is recommended for $10 \sim 20$ seconds at $220 \sim 260$ °C.

3.3 Soldering Method and Temperature

Items	Methods	Temperature
Reflow	Soldering by passing the heated zone	Max 260°C in 10sec
Solder Iron	Soldering by solder-iron	Max 350°C in 3sec

4. Packaging

4.1 Taping

1)HEX-101A-4T should be packed marking side to cover tape side and put long side to

tape running direction.180° rotation has no effect on the application

- Carrier Tape
- 2) Devices should not run out of a pocket when tape is bent down 15mm curvature.
- 3) Devices should not stick to cover tape.
- 4) Devices should be kept below 40° C and below RH80% in the shade.
- 5) Tape has no joint.

4.3 Packing Unit

- 1) 3,000pcs of devices are packed in one reel.
- 2) Five reels are packed in one inner box.
- 3) Four inner boxes, 60,000pcs of devices, are packed in one outer box.
- 4) Dummy could be packed for safe dealing.

5.1 External Dimensions (Unit : mm)

Four leads of input-output terminals are designed in the diagonally symmetric mode and are equal in dimensions.HEX-101A-4T could be used without considering on the rotation of 180°.

LEAD CONNECTION			
INPUT	1(±)	3(+)	
OUTPUT	2(±)	4(∓)	

[Package Dimensions]

5.2 Marking Method

Devices should be marked by LASER beam in the form of [Rank] .

